

GATE SCIENCE MATHEMATICS SAMPLE THEORY

- * SEQUENCES
- * LIMITS: INFERIOR & SUPERIOR
- * ALGEBRA OF SEQUENCES
- * FOURIER SERIES

M CLASS

WhatsApp: 9001894070

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

1. SEQUENCE

A sequence in a set S is a function whose domain is the set N of natural numbers and whose range is a subset of S. A sequence whose range is a subset of R is called a real sequence.

 $S_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{n}$ $S_{1} = u_{1}$ $S_{2} = u_{1} + u_{2}$ $S_{3} = u_{1} + u_{2} + u_{3}$ \dots $S_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{n} \rightarrow \text{ series}$

Sequence

Bounded Sequence: A sequence is said to be bounded if and only if its range is bounded. Thus a sequence S_n is bounded if there exists

$$k \le S_n \le K, \forall n \in N$$

 $\Leftrightarrow S_n \in [k, K]$

The I. u. b (Supremum) and the g.l.b (infimum) of the range of a bounded sequence may be referred as its g.l.b and l.u.b respectively.

2. LIMITS INFERIOR AND SUPERIOR

From the definition of limit, it follows that the limiting behavior of any sequence $\{a_n\}$ of real numbers, depends only on sets of the form $\{a_n : n \ge m\}$, i.e., $\{a_m, a_{m+1}, a_{m+2}, \ldots\}$. In this regard we make the following definition.

Definition: Let {a, } be a sequence of real numbers (not necessarily bounded). We define

$$\lim_{n \to \infty} \inf a_n = \sup_{n \to \infty} \inf \{a_n, a_{n+1}, a_{n+2}, \dots \}$$

 $\lim_{n \to \infty} \sup a_{n} = \inf_{n} \sup \{a_{n}, a_{n+1}, a_{n+2}, \dots\}$

And

As the limit inferior and limit superior respectively of the sequence $\{a_n\}$.

Limit inferior and limit superior of $\{a_n\}$ is denoted by $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} a_n$ or simply by $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} a_n$

respectively.

We use the following notations for the sequence $\{a_n\}$, for each $n \in N$

$$\underline{A}_{n} = \inf \{ a_{n}, a_{n+1}, a_{n+2}, \dots \},\$$

 WhatsApp: 9001894070
 Mobile: 9001297111, 9829567114

 Website: www.vpmclasses.com
 E-Mail: info@vpmclasses.com
 Page 2

And

 $\overline{A}_{n} = \sup \{a_{n}, a_{n+1}, a_{n+2}, \dots \}.$

Therefore, we have

$$\underline{\lim}_{n} a_{n} = \sup_{n} \underline{A}_{n}$$

 $\overline{\lim} a_n = \inf A_n$

And

Now $\{a_{n+1}, a_{n+2}, \ldots\} \subseteq \{a_n, a_{n+1}, a_{n+2}, \ldots\}$, Therefore by taking infimum and supremum respectively, it follows that

$$\underline{A}_{n+1} \ge \underline{A}_n$$
 And $\overline{A}_{n+1} \le \overline{A}_n$

This is true for each $n \in \mathbf{N}$.

The above inequalities show that the associated sequences $\{\underline{A}_n\}$ and $\{\overline{A}_n\}$ monotonically increase and decrease respectively with n.

Remark: It should be noted that both limits inferior and superior exist uniquely (finite or infinite) for all real sequences.

Theorem: If $\{a_n\}$ is any sequence, then

$$\underline{\lim} (-a_n) = -\overline{\lim} a_n$$
, and $\overline{\lim} (-a_n) = -\underline{\lim} a_n$.

Let $b_n = -a_n$, $n \in N$ then we have

$$\underline{B}_{n} = \inf \{ b_{n}, b_{n+1}, \dots \}$$
$$= -\sup \{ a_{n}, a_{n+1}, \dots \} = -\overline{A}_{n}$$

And so

$$\underbrace{\lim}_{n} (-a_{n}) = \underbrace{\lim}_{n} b_{n} = \sup (\underline{B}_{1}, \underline{B}_{2}, \dots)$$
$$= \sup \{-\overline{A}_{1}, -\overline{A}_{2}, \dots\}$$
$$= -\inf \{\overline{A}_{1}, \overline{A}_{2}, \dots\}$$
$$= -\inf \overline{A}_{n} = -\overline{\lim} a_{n}.$$

Also,

 $\underline{\lim a_n} = \underline{\lim} (-(a_n)) = -\overline{\lim} (-a_n).$

Theorem: If $\{a_n\}$ is any sequence, then

 $\lim_{n \to \infty} a_n = -\infty$ if and only if $\{a_n\}$ is not bounded below,

And $\overline{\lim} a_n = +\infty$ if and only if $\{a_n\}$ is not bounded above.

Let $\underline{A}_n = \inf \{a_n, a_{n+1}, \ldots, \},\$

WhatsApp: 9001894070

Mobile: 9001297111, 9829567114

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

And

 $\overline{A}_n = \sup \{a_n, a_{n+1}, \ldots\}, n \in N$

By definition we have

$$\underline{\lim} a_n = -\infty \Leftrightarrow \sup \{\underline{A}_1, \underline{A}_2,\} = -\infty$$

 $\Leftrightarrow \qquad \underline{A}_n = -\infty, \qquad \forall n \in \mathbf{N}$

$$\Leftrightarrow \qquad \inf \{a_n, a_{n+1}, \dots\} = -\infty, \ \forall \ n \in \mathbf{N}$$

 \Leftrightarrow {a_n} is not bounded below:

The proof for limit superior is similar.

Corollary: If $\{a_n\}$ is any sequence, then

(i) $-\infty < \lim_{n \to \infty} a_n \le +\infty$ iff $\{a_n\}$ is bounded below.

and

(ii) $-\infty \le \overline{\lim} a_n < +\infty$ iff $\{a_n\}$ is bounded above.

For bounded sequences, we have the following useful criteria for limits inferior and superior respectively.

Limit points of a sequence.

A number ξ is said to be a limit point of a sequence S_n if given any nbd of ξ , S_n belongs to the same for an infinite number of values of n.

Now $\{S_{n+1} \ S_{n+2}, \ S_{n+3}, \ ...\} \subseteq \{S_n, \ S_{n+1}, \ S_{n+2}, \ ...\}$, therefore by taking infimum and supremum respectively, if follows that $\underline{A}_{n+1} \ge \underline{A}_n$ and $\overline{A}_{n+1} \le \overline{A}_n$ for each $n \in N$

Remark: Both limits inferior and superior exist uniquely (finite or infinite) for all real sequence.

Theorem: If $\{S_n\}$ is any sequence, then

inf $S_n \leq \underline{lim} S_n \leq Sup S_n$

If $\{S_n\}$ is any sequence, then

 $\underline{\lim}\{-S_n\} = -\overline{\lim}S_n$

And $-\overline{\lim} \{-S_n\} = \overline{\lim} S_n$

3. SOME IMPORTANT PROPERTIES OF ALGEBRA OF SEQUENCES

1. If $\{a_n\}$ is a bounded sequence such that $a_n > 0$ for all $n \in N$, then

(i)
$$\underline{\lim}\left(\frac{1}{a_n}\right) = \frac{1}{\overline{\lim}a_n}$$
, if $\overline{\lim}a_n > 0$
(ii) $\underline{\lim}\left(\frac{1}{a_n}\right) = \frac{1}{\underline{\lim}a_n}$, if $\underline{\lim}a_n > 0$

WhatsApp: 9001894070

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: <u>info@vpmclasses.com</u>

CLA

2. If $\{a_n\}$ and $\{b_n\}$ are bounded sequence, $a_n \ge 0, b_n > 0$ for all $n \in N$, then

(i)
$$\underline{\lim}\left(\frac{a_{n}}{b_{n}}\right) \ge \underline{\lima_{n}}_{\overline{\lim}b_{n}}$$
, if $\overline{\lim}b_{n} > 0$
(ii) $\overline{\lim}\left(\frac{a_{n}}{b_{n}}\right) \le \frac{\overline{\lima_{n}}}{\underline{\lim}b_{n}}$, if $\underline{\lim}b_{n} > 0$

4. SOME IMPORTANT SEQUENCE TESTS

1. Cauchy's root test

Let Σu_n be +ve term series and

$$\lim_{n\to\infty} \{u_n\}^{u_n} = \ell$$

Then the series is

(i) Cgt if
$$\ell < 1$$

(ii) Dgt if *ℓ* > 1

(iii) No firm decision is possible if $\ell = 1$

2. Raabe's test

Let Σu_n be a +ve term series and

$$limn\!\left\{\!\frac{u_n}{u_{n+1}}\!-\!1\!\right\} = \ell$$

then the series is

(i) Cgt if
$$\ell > 1$$

(ii) Dgt if $\ell < 1$

(iii) No firm decision is possible if $\ell = 1$

3. Logarithmic Test:

If $\Sigma u_{_{n}}$ is +ve terms series such that

$$\lim_{n\to\infty} \left(nlog \frac{u_n}{u_{n+1}} \right) = \ell$$

Then the series

(ii) dgt if $\ell < 1$

4. Absolute convergent

WhatsApp: 9001894070

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

C

A series Σu_n is said to be absolutely cgt if the positive term series $\Sigma |u_n|$ formed by the moduli of the terms of the series is convergent.

5. Conditional convergent

A series is said to be conditionally convergent if it is convergent without being absolutely convergent.

Theorem: Every absolute convergent series is convergent.

Note. (i) If Σu_n is cgt without being absolutely cgt. I.e. if Σu_n is conditionally cgt then each of the +ve

term series $\Sigma g(n)$ and $\Sigma h(n)$ diverges to infinity which follows from

$$g(n) = \frac{1}{2} \left[\left| u_n \right| + u_n \right]$$
$$h(n) = \frac{1}{2} \left[\left| u_n \right| - u_n \right]$$

(ii) It should be noted that three are no comparison tests for the cgt of conditionally cgt series.

Alternating series

A series whose terms are alternately +ve and -ve is called an alternating series

6. Leibnitz's test

Let u be a sequence such that $\forall n \in N$

(ii) $u_{n+1} \leq u_n$

(iii) lim u = 0

Then alternating series $u(1) - u(2) + u(3) - u(4) + \dots + (-1)^{n+1} u(n) \dots$ is cgt.

7. Abel's Test

If a_n is a positive, monotonic decreasing function and if Σu_n is convergent series, then the series $\Sigma u_n a_n$ is also convergent.

Uniform convergence

Point wise Convergence of Sequence of Functions

Definition: A sequence of functions $\{f_n\}$ defined on [a, b] is said to be point-wise convergent to a function f on [a, b], if

to each \in > 0 to each $x \in$ [a, b], there exists a positive integer m (depending on ϵ and the point x) such that

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

C

JA

 $|f_n(x) - f(x)| < \varepsilon \quad \forall n > m \text{ and } \forall x \in [a,b].$

The function f is called the point-wise limit of the sequence $\{f_n\}$. We write $\lim_{n \to \infty} f_n(x) = f(x)$.

5. FOURIER SERIES

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\alpha} a_n \cos nx + \sum_{n=1}^{n} b_n \sin nx$$

Where (0 < x < 2 π)
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cosh x dx$$

And
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sinh dx$$

And for $(-\pi < x < \pi)$

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cosnx dx$$

And $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sinh dx$

Where f(x) is an odd function; $a_0 = 0$ and $a_n = 0$ where f(x) is an even function; $b_n = 0$.

Fourier series in the interval $(0 < x < 2\ell)$ is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$$
Where $a_0 = \frac{1}{l} \int_0^{2l} f(x) dx$

$$a_n = \frac{1}{l} \int_0^{2l} f(x) \cos \frac{n\pi x}{l} dx$$
And $b_n = \frac{1}{l} \int_0^{2l} f(x) \sin \frac{n\pi x}{l} dx$
In the interval $(-\ell < x < \ell)$

WhatsApp: 9001894070

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

Page 7

$$a_{0} = \frac{1}{l} \int_{-l}^{+l} f(x) dx, a_{n} = \frac{1}{l} \int_{-l}^{+l} f(x) \cos \frac{n\pi x}{l} dx$$

And
$$b_n = \frac{1}{l} \int_{-l}^{+l} f(x) \sin \frac{n\pi x}{l} dx$$

Note: When f(x) is an odd function, $a_0 = 0$ and $a_n = 0$ when f(x) is an even function, $b_n = 0$.

Half-Range series ($0 < x < \pi$)

A function f(x) defined in the interval $0 < x < \pi$ has two distinct half-range series.

(i) The half-range cosine series is

$$f(x) = \frac{a_0}{2} + \sum a_n \cos nx$$

Where
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$
 and $a_n = \int_0^{\pi} f(x) \cos nx dx$

(ii) The half range sine series is,

$$f(x) = \Sigma b_n \sin nx$$

Where
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$$
.

Half-Range Series (0 < x < l)

A function f (x) defined in the interval (0 < x < *l*) and having two distinct half-range series. (i) The half range cosine series is,

$$f(x) = \frac{a_0}{2} + \Sigma a_n \cos \frac{n\pi x}{l}$$

Where
$$a_0 = \frac{2}{l} \int_0^l f(x) dx$$

And
$$a_n = \frac{2}{l} \int_{0}^{l} f(x) \frac{\cos n\pi x}{l} dx$$

(ii) The half-range sine series is,

$$f(\mathbf{x}) = \Sigma \mathbf{b}_{n} \sin \frac{\mathbf{n} \pi \mathbf{x}}{l}$$

Where
$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx$$

Complex form of Fourier Series

$$f(x) = \sum_{m=-\infty}^{+\infty} c_m e^{imx}$$

WhatsApp: 9001894070

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

Where
$$c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-imx} dx$$

 $c_0 = \int_{-\pi}^{+\pi} f(x) dx$ and
 $C_{-m} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) e^{imx} dx.$

Parseval's Identity

For Fourier series,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}, 0 < x < 2l$$

The Parseval's identity is

$$\frac{1}{2l} \int_{0}^{2l} \left[f(x) \right]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2} \right)$$

FOURIER INTEGRAL

Where

The Fourier series of periodic function f (x) on the interval $(-\ell, +\ell)$ is given by

$$f(x) = a_{0} + \frac{n\pi x}{\ell} \cos \frac{n\pi x}{\ell} + \sum_{n=1}^{\infty} b_{n} \sin \frac{n\pi x}{\ell} \qquad \dots \dots (1)$$

$$a_{0} = \frac{1}{2\ell} \int_{-\ell}^{+\ell} f(x) dx = \frac{1}{2\ell} \int_{-\ell}^{+\ell} f(t) dt$$

$$a_{n} = \frac{1}{\ell} \int_{-\ell}^{+\ell} f(t) \cos \frac{n\pi t}{\ell} dt$$

$$b_{n} = \frac{1}{\ell} \int_{-\ell}^{+\ell} f(t) \sin \frac{n\pi t}{\ell} dt$$

Then

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} du \int_{-\infty}^{+\infty} f(t) \cos u(x-t) dt$$

This is a form of Fourier Integral.

SOME PROBLEMS

1. The set of all positive values of a for which the series $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \tan^{-1}\left(\frac{1}{n}\right)\right)^{a}$ converges, is

(A)
$$\left(0,\frac{1}{3}\right]$$
 (B) $\left(0,\frac{1}{3}\right)$ (C) $\left[\frac{1}{3},\infty\right)$ (D) $\left(\frac{1}{3},\infty\right)$

2. Match the following

WhatsApp: 9001894070

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

Page 9

CLASS Μ

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

	Series (X)		Domain of convergence (Y)			
	A. $\sum \frac{x^n}{n^3}$	(i) [0,	(i) [0, 2]			
	B. $\sum (-1)^n \frac{x^{2n+1}}{2n+1}$	(ii) [—2	(ii) [-2 -e, -2 + e]			
	C. $\sum \frac{(-1)^{n+1}}{n} (x-1)^{n}$	° (iii) [–	(iii) [–1, 1]			
	D. $\sum \frac{n!(x+2)^n}{n^n}$	(iv)]–	(iv)]–1, 1[
	А	В	С	D		
	(A) (iv)	(iii)	(ii)	(i)		
	(B) (iv)	(iii)	(i)	(ii)		
	(C) (iii)	(iv)	(i)	(ii)		
•	(D) (i)	(ii)	(iv)	(iii)		
3.	The series $1^{p} + \left(\frac{1}{2}\right)^{p} + \left(\frac{1.3}{2.4}\right)^{p} + \left(\frac{1.3.5}{2.4.6}\right)^{p} + \dots \text{ is } -$ (A) Convergent, if $p \ge 2$ divergent, if $p < 2$					
	(B) Convergent, if $p > 2$ and divergent, if $p \le 2$					
	(C) Convergent, if $p \le 2$ and divergent, if $p > 2$					
	(D) Convergent, if $p < 2$ and divergent, if $p \ge 2$					
4.	For the improper integral $\int_{0}^{1} x^{\alpha-1} e^{-x} dx$ which one of the following is true ?					
	 (A) if α < 0, convergent and if α = 0, divergent (B) if α ≥ 0, Convergent and if α < 0, divergent (C) if α > 0, convergent and if α ≤ 0, divergent (D) If α > 0, divergent and if α ≤ 0, convergent 					
5.	Let $A \subseteq R$ and Let $f_1 f_2 - f_n$ be functions on A to R and Let c be a cluster point of A if $L_k = \underset{x \to c}{\text{Lim}} f_k$ for k					
	1,, n Then $\lim_{x\to c} [f(x)]^c$					
	(A) L	(B) $L_k k \in N$	(C)) L ⁿ	(D) 1	
WhatsApp: 9001894070 Mobile: 9001297111, 9829567114						

Website: <u>www.vpmclasses.com</u>

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

ANSWER KEY :- 1. (D), 2. (B), 3. (B), 4. (C), 5. (C)

1. (D) Use the following results:

(1) Let $\Sigma a_n \& \Sigma b_n$ be two positive term series

- (i) If $\underset{n\to\infty}{\text{Lt}} \frac{a_n}{b_n} = \ell$, ℓ being a finite non-zero constant, then $\Sigma a_n \& \Sigma b_n$ both converge or diverge together.
- (ii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0 \& \Sigma \beta \nu$ converges, then Σa_n also converges.

(2) The series $\sum \frac{1}{n^p}$ converges if p > 1 & diverges if p ≤ 1. We compare the given series with the

series
$$\sum \frac{1}{n^{ap}}$$

$$\lim_{n \to \infty} \frac{\left(\frac{1}{n} - \tan^{-1} \frac{1}{n}\right)^{a}}{\frac{1}{n^{ap}}} = \lim_{n \to \infty} \frac{\left(\frac{1}{3n^{3}} - \frac{1}{5n^{5}} \dots \right)^{a}}{\frac{1}{n^{pa}}} \left[\because \frac{1}{n} - \tan^{-1} \left(\frac{1}{n}\right) = \frac{1}{n} - \left[\frac{1}{n} - \frac{1}{3n^{3}} + \dots \right] \right]$$

$$= \frac{1}{3n^{3}} - \frac{1}{5n^{5}} + \dots$$

$$= \lim_{n \to \infty} \left(\frac{n^{p}}{3n^{3}} - \frac{n^{p}}{5n^{5}} - \dots - \right)^{a}$$

For this limit to be zero or some other finite number

$$3 - p \ge 0 \qquad \text{i.e. } p \le 3$$

& for the series $\sum \frac{1}{n^{ap}}$ to be convergent, $ap > 1$
$$\Rightarrow \qquad a > \frac{1}{p} \ge \frac{1}{3}$$
$$\Rightarrow \qquad a > \frac{1}{3}$$
$$\Rightarrow \qquad a \in \left(\frac{1}{3}, \infty\right) \quad \therefore \text{ Ans. is (D)}$$

2. (B) (i)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

 $\therefore a_n = \frac{1}{n^3}; a_{n+1} = \frac{1}{(n+1)^3}$

WhatsApp: 9001894070

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

$$\mathsf{R} = \lim_{n \to \infty} \left| \frac{\mathsf{a}_n}{\mathsf{a}_{n+1}} \right| = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^3 = 1$$

So the domain of a_n is]–1, 1[$\sum \frac{1}{n^2}$

For x = 1 the given power series is

Which is convergent.

For x = -1 the given power series is

$$-1 + \frac{1}{2^3} - \frac{1}{3^3} + \frac{1}{4^3} \dots$$

Which is convergent, by leibnitz's test.

∴ **Ans.** is (iv)

(ii)
$$\sum (-1)^n \frac{x^{2n+1}}{2n+1}$$

R = $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| == \lim_{n \to \infty} \frac{2n+3}{2n+1} = 1$

The interval of convergence [-1, 1]

for x = 1, the series becomes

$$1 - \frac{1}{3} + \frac{1}{5}$$
... Which is convergent by Leibnitz's test

For x = -1 the series becomes $-1 + \frac{1}{3} - \frac{1}{5}$...

Which is again convergent.

Hence the exact interval of convergency is [-1, 1]. ... Ans. is (iii)

(iii)
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n}{n-1} \right| = 1$$

Since the given power series is about the point x = 1 the interval of convergence is

$$-1 + 1 < x < 1 + 1 = 0 < x < 2$$

for x = +2, the given series $\sum \frac{(-1)^{n+1}}{n}$ which is convergent by leibnitz's test.

Hence the exact interval of convergence is [0, 2]. \therefore **Ans.** is (i)

(iv)
$$\sum \frac{n!(x+2)^n}{n^n}$$

The given power series is about the point x = 2

WhatsApp: 9001894070

Website: www.vpmclasses.com

Mobile: 9001297111, 9829567114

E-Mail: <u>info@vpmclasses.com</u>

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n!}{n^n} \cdot \frac{(n+1)^{n+1}}{(n+1)!}$$
$$= \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

∴ **Ans.** is (ii)

The interval of convergence is [-2 - e, -2 + e],

3. (B) Neglecting the first term

$$u_{n} = \left(\frac{1.3.5....(2n-1)}{2.4.6....2n}\right)^{p}$$

and $u_{n+1} = \left(\frac{1.3.5....(2n-1)(2n+1)}{2.4.6....(2n)(2n+2)}\right)^{p}$
$$\therefore \qquad \frac{u_{n}}{u_{n+1}} = \left(\frac{2n+2}{2n+1}\right)^{p} = \frac{\left(1+\frac{1}{n}\right)^{p}}{\left(1+\frac{1}{2n}\right)^{p}}$$

or,
$$\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lim_{n \to \infty} \frac{\binom{1+-}{n}}{\left(1+\frac{1}{2n}\right)^p} = 1$$

 \therefore Ratio test fails.

$$\therefore \log \frac{u_n}{u_{n+1}} = \log \left\{ \frac{\left(1 + \frac{1}{n}\right)^p}{\left(1 + \frac{1}{2n}\right)^p} \right\}$$

$$= p \log \left(1 + \frac{1}{n}\right) - p \log \left(1 + \frac{1}{2n}\right)$$

$$= p \left[\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \dots\right) - \left(\frac{1}{2n} - \frac{1}{8n^2} + \frac{1}{24n^3}\right) \right]$$

$$= p \left[\left(\frac{1}{n} - \frac{1}{2n^2}\right) - \left(\frac{1}{2n} - \frac{1}{8n^2}\right) + \left(\frac{1}{3n^3} - \frac{1}{24n^3}\right) + \dots \right]$$

$$= p \left[\frac{1}{2n} - \frac{3}{8n^2} + \frac{7}{24n^3} + \dots \right]$$

WhatsApp: 9001894070

Mobile: 9001297111, 9829567114

E-Mail: info@vpmclasses.com

$$\therefore \lim_{n \to \infty} n \log \frac{u_n}{u_{n+1}}$$

$$= \lim_{n \to \infty} p \left(\frac{1}{2} - \frac{3}{8n} + \frac{7}{24n^2} + \dots \right)$$

$$= \frac{p}{2}$$
From Logarithmic test.
The series is convergent, if $\frac{1}{2}p > 1$, i.e., p

The series is convergent, if $\frac{1}{2} p > 1$, i.e., p > 2The series is divergent, if $\frac{1}{2} p < 1$, i.e., p < 2The test fails, if $\frac{1}{2} p = 1$ i.e., p = 2Now $n \log \frac{u_n}{u_{n+1}} = 2 \left(\frac{1}{2} - \frac{3}{8n} + \frac{7}{24n^2} + ...\right)$ or, $\left\{ n \log \frac{u_n}{u_{n+1}} - 1 \right\}$ $= \left\{ \left(1 - \frac{3}{4n} + \frac{7}{12n^2} + ...\right) - 1 \right\}$ $= -\frac{3}{4n} + \frac{7}{12n^2} + ...$ or, $\left\{ n \log \frac{u_n}{u_{n+1}} - 1 \right\} \log n$ $= -\frac{3}{4} \times \frac{\log n}{n} + \frac{7}{12} \times \frac{\log n}{n^2} + ...$ or, $\lim_{n \to \infty} \left(-\frac{3}{4} \times \frac{\log n}{n} + \frac{7}{12} \times \frac{\log n}{n^2} ... \right)$

Hence by higher logarithmic test the given series is divergent, if p = 2. Hence the given series is convergent when p > 2 and divergent when $p \le 2$. The correct answer is (2).

4. (C)
$$\int_0^1 x^{\alpha - 1} e^{-x} dx$$
,

When $\alpha > 1$, the given integral is a proper integral and hence it is convergent. When $\alpha < 1$, the integrand becomes infinite at x = 0.

WhatsApp: 9001894070Mobile: 9001297111, 9829567114Website: www.vpmclasses.comE-Mail: info@vpmclasses.com

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Now $\lim_{x\to 0} x^{\mu} . x^{\alpha-1} e^{-x} = \lim_{x\to 0} x^{\mu+\alpha-1} e^{-x} = 1$

if
$$\mu + \alpha - 1 = 0$$
, i.e., $\mu = 1 - \alpha$

We then have 0 < μ < 1 when 0 < α < 1

and $\mu \ge 1$ where $\alpha \le 0$.

It follows by μ -test that the integral is convergent when $0 < \alpha < 1$ and divergent when $\alpha \leq 0$.

And we have proved above that the integral is convergent when $\alpha \ge 1$. Consequently the given integral is convergent if $\alpha > 0$ and divergent if $\alpha \le 0$.

5. (C) if
$$L_k = \lim_{x \to c} f_k$$

then it follows from a by known result which is called an Induction argument that

$$L_1 + L_2 + \dots + L_n = \lim_{x \to c} f(_1 + f_2 + \dots + f_n),$$

and

$$L_1 \cdot L_2 \cdots L_n = \lim(f_1 \cdot f_2 \cdots f_n).$$

In particular, we deduce that if L = lim f and $n \in N$, then

$$L^n = \lim_{x \to c} (f(x))^n.$$

WhatsApp: 9001894070