GATE SCIENCE MATHEMATICS SAMPLE THEORY

 SAMPLE THEORY}

* SEQUENCES
* LIMITS: INFERIOR \& SUPERIOR
* ALGEBRA OF SEQUENCES
* FOURIER SERIES

GATE SCIENCE - MATHEMATICS

SAMPLE THEORY

SEQUENCES, SERIES AND LMT POINTS OF SEQUENCES

- SEQUENCES
- LIMITS : IIIFERIOR \& SUPERIOR
- ALGEBRA OF SEQUEIICES
- SEQUEIICE TESTS
- FOURIER SERIES
- SOME PROB LEMS

VPM CLASSES

For IIT-IAM I LI GAE I ETI IMIET and Cthor Entrance Exame

Web Site whw.vpmclasses.com E-mail-vpmclasses@yahoo.com

1. SEQUENCE

A sequence in a set S is a function whose domain is the set N of natural numbers and whose range is a subset of S. A sequence whose range is a subset of R is called a real sequence.

$$
\begin{gathered}
S_{n}=u_{1}+u_{2}+u_{3}+\ldots \ldots+u_{n} \\
S_{1}=u_{1} \\
S_{2}=u_{1}+u_{2} \\
S_{3}=u_{1}+u_{2}+u_{3} \\
\ldots \\
\ldots \\
S_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n} \rightarrow \text { series } \\
\downarrow
\end{gathered}
$$

Sequence

Bounded Sequence: A sequence is said to be bounded if and only if its range is bounded. Thus a sequence S_{n} is bounded if there exists

$$
\begin{aligned}
& \mathrm{k} \leq \mathrm{S}_{\mathrm{n}} \leq \mathrm{K}, \forall \mathrm{n} \in \mathrm{~N} \\
& \Leftrightarrow \mathrm{~S}_{\mathrm{n}} \in[\mathrm{k}, \mathrm{~K}]
\end{aligned}
$$

The I. u. b (Supremum) and the g.I.b (infimum) of the range of a bounded sequence may be referred as its g.I.b and l.u.b respectively.

2. LIMITS INFERIOR AND SUPERIOR

From the definition of limit, it follows that the limiting behavior of any sequence $\left\{a_{n}\right\}$ of real numbers, depends only on sets of the form $\left\{a_{n}: n \geq m\right\}$, i.e., $\left\{a_{m}, a_{m+1}, a_{m+2}, \ldots\right\}$. In this regard we make the following definition.

Definition Let $\left\{a_{n}\right\}$ be a sequence of real numbers (not necessarily bounded). We define

$$
\lim _{n \rightarrow \infty} \inf a_{n}=\sup _{n} \inf \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
$$

And

$$
\lim _{n \rightarrow \infty} \sup a_{n}=\inf _{n} \sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
$$

As the limit inferior and limit superior respectively of the sequence $\left\{a_{n}\right\}$.
Limit inferior and limit superior of $\left\{a_{n}\right\}$ is denoted by $\lim _{n \rightarrow \infty} a_{n}$ and $\overline{\lim }_{n \rightarrow \infty} a_{n}$ or simply by $\underline{\lim } a_{n}$ and $\overline{\lim } a_{n}$ respectively.
We use the following notations for the sequence $\left\{a_{n}\right\}$, for each $n \in N$

$$
\underline{A}_{n}=\inf \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\},
$$

And

$$
\bar{A}_{n}=\sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
$$

Therefore, we have

$$
\underline{\lim } a_{n}=\sup _{n} \underline{A}_{n}
$$

And

$$
\overline{\lim } a_{n}=\inf _{n} A_{n}
$$

Now $\left\{a_{n+1}, a_{n+2}, \ldots\right\} \subseteq\left\{a_{n}, a_{n+1}, a_{n+2}, \ldots.\right\}$, Therefore by taking infimum and supremum respectively, it follows that

$$
\underline{A}_{n+1} \geq \underline{A}_{n} \text { And } \overline{\mathrm{A}}_{n+1} \leq \overline{\mathrm{A}}_{n}
$$

This is true for each $\mathrm{n} \in \mathbf{N}$.
The above inequalities show that the associated sequences $\left\{\underline{A}_{n}\right\}$ and $\left\{\overline{\mathrm{A}}_{n}\right\}$ monotonically increase and decrease respectively with n.

Remark: It should be noted that both limits inferior and superior exist uniquely (finite or infinite) for all real sequences.
Theorem: If $\left\{a_{n}\right\}$ is any sequence, then

$$
\underline{\lim }\left(-a_{n}\right)=-\overline{\lim } a_{n}, \text { and } \overline{\lim }\left(-a_{n}\right)=-\underline{\lim } a_{n} .
$$

Let $b_{n}=-a_{n}, n \in N$ then we have

$$
\begin{aligned}
\underline{B}_{n} & =\inf \left\{b_{n}, b_{n+1}, \ldots\right\} \\
& =-\sup \left\{a_{n}, a_{n+1}, \ldots\right\}=-\bar{A}_{n}
\end{aligned}
$$

And so

$$
\begin{aligned}
\underline{\lim }\left(-\mathrm{a}_{n}\right)=\underline{\lim } & \mathrm{b}_{n}=\sup \left(\underline{B}_{1}, \underline{\mathrm{~B}}_{2}, \ldots \ldots\right) \\
& \left.=\sup \left\{-\overline{\mathrm{A}}_{1},-\overline{\mathrm{A}}_{2}, \ldots\right\}\right\} \\
& =-\inf \left\{\overline{\mathrm{A}}_{1}, \overline{\mathrm{~A}}_{2}, \ldots .\right\} \\
& =-\inf \overline{\mathrm{A}}_{\mathrm{n}}=-\overline{\lim } \mathrm{a}_{n} .
\end{aligned}
$$

Also,

$$
\underline{\lim } a_{n}=\underline{\lim }\left(-\left(a_{n}\right)\right)=-\overline{\lim }\left(-a_{n}\right) .
$$

Theorem: If $\left\{a_{n}\right\}$ is any sequence, then
$\underline{\lim } \mathrm{a}_{\mathrm{n}}=-\infty$ if and only if $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is not bounded below,
And $\quad \overline{\lim } a_{n}=+\infty$ if and only if $\left\{a_{n}\right\}$ is not bounded above.
Let $\quad \underline{A}_{n}=\inf \left\{a_{n}, a_{n+1}, \ldots\right\}$,

And

$$
\overline{\mathrm{A}}_{\mathrm{n}}=\sup \left\{\mathrm{a}_{\mathrm{n}}, \mathrm{a}_{\mathrm{n}+1}, \ldots\right\}, \mathrm{n} \in \mathrm{~N}
$$

By definition we have

$$
\begin{array}{ll}
& \underline{\lim } \mathrm{a}_{\mathrm{n}}=-\infty \Leftrightarrow \sup \left\{\underline{A}_{1}, \underline{A}_{2}, \ldots\right\}=-\infty \\
\Leftrightarrow & \underline{\mathrm{A}}_{\mathrm{n}}=-\infty, \quad \forall \mathrm{n} \in \mathbf{N} \\
\Leftrightarrow & \inf \left\{\mathrm{a}_{\mathrm{n}}, \mathrm{a}_{\mathrm{n}+1}, \ldots\right\}=-\infty, \forall \mathrm{n} \in \mathbf{N} \\
\Leftrightarrow & \left\{\mathrm{a}_{\mathrm{n}}\right\} \text { is not bounded below: }
\end{array}
$$

The proof for limit superior is similar.
Corollary: If $\left\{a_{n}\right\}$ is any sequence, then
(i) $-\infty<\underline{\lim } \mathrm{a}_{\mathrm{n}} \leq+\infty$ iff $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is bounded below.
and
(ii) $-\infty \leq \overline{\lim } a_{n}<+\infty$ iff $\left\{a_{n}\right\}$ is bounded above.

For bounded sequences, we have the following useful criteria for limits inferior and superior respectively.

Limit points of a sequence.

A number ξ is said to be a limit point of a sequence S_{n} if given any nbd of ξ, S_{n} belongs to the same for an infinite number of values of n.
Now $\left\{S_{n+1} S_{n+2}, S_{n+3}, \ldots\right\} \subseteq\left\{S_{n}, S_{n+1}, S_{n+2}, \ldots\right\}$, therefore by taking infimum and supremum respectively, if follows that $\underline{A_{n+1}} \geq \underline{A_{n}}$ and $\overline{A_{n+1}} \leq \overline{A_{n}}$ for each $n \in N$

Remark: Both limits inferior and superior exist uniquely (finite or infinite) for all real sequence.
Theorem: If $\left\{S_{n}\right\}$ is any sequence, then
$\inf S_{n} \leq \lim S_{n} \leq \operatorname{Sup} S_{n}$
If $\left\{S_{n}\right\}$ is any sequence, then
$\underline{\lim }\left\{-S_{n}\right\}=-\overline{\lim } S_{n}$
And $-\overline{\lim }\left\{-\mathrm{S}_{\mathrm{n}}\right\}=\overline{\lim } \mathrm{S}_{\mathrm{n}}$

3. SOME IMPORTANT PROPERTIES OF ALGEBRA OF SEQUENCES

1. If $\left\{a_{n}\right\}$ is a bounded sequence such that $a_{n}>0$ for all $n \in N$, then
(i) $\lim \left(\frac{1}{a_{n}}\right)=\frac{1}{\overline{\lim } a_{n}}$,if $\overline{\lim } a_{n}>0$
(ii) $\underline{\lim }\left(\frac{1}{a_{n}}\right)=\frac{1}{\underline{\lim } a_{n}}$, if $\underline{\lim } a_{n}>0$
2. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded sequence, $a_{n} \geq 0, b_{n}>0$ for all $n \in N$, then
(i) $\lim \left(\frac{a_{n}}{b_{n}}\right) \geq \xlongequal[\overline{\lim } a_{n}]{\overline{\lim }}$,if $\overline{\lim } b_{n}>0$
(ii) $\overline{\lim }\left(\frac{a_{n}}{b_{n}}\right) \leq \frac{\overline{\lim } a_{n}}{\lim b_{n}}$,if $\underline{\lim } b_{n}>0$

4. SOME IMPORTANT SEQUENCE TESTS

1. Cauchy's root test

Let Σu_{n} be + ve term series and

$$
\lim _{n \rightarrow \infty}\left\{u_{n}\right\}^{u_{n}}=\ell
$$

Then the series is
(i) Cgt if $\ell<1$
(ii) Dgt if $\ell>1$
(iii) No firm decision is possible if $\ell=1$

2. Raabe's test

Let Σu_{n} be a + ve term series and

$$
\lim \left\{\frac{u_{n}}{u_{n+1}}-1\right\}=\ell
$$

then the series is
(i) Cgt if $\ell>1$
(ii) Dgt if $\ell<1$
(iii) No firm decision is possible if $\ell=1$

3. Logarithmic Test:

If Σu_{n} is $+v e$ terms series such that

$$
\lim _{n \rightarrow \infty}\left(n \log \frac{u_{n}}{u_{n+1}}\right)=\ell
$$

Then the series
(i) cgt if $\ell>1$
(ii) dgt if $\ell<1$

4. Absolute convergent

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

A series Σu_{n} is said to be absolutely cgt if the positive term series $\Sigma\left|u_{n}\right|$ formed by the moduli of the terms of the series is convergent.

5. Conditional convergent

A series is said to be conditionally convergent if it is convergent without being absolutely convergent.
Theorem: Every absolute convergent series is convergent.
Note. (i) If Σu_{n} is cgt without being absolutely cgt. I.e. if Σu_{n} is conditionally cgt then each of the + ve term series $\Sigma g(n)$ and $\Sigma h(n)$ diverges to infinity which follows from

$$
\begin{aligned}
& g(n)=\frac{1}{2}\left[\left|u_{n}\right|+u_{n}\right] \\
& h(n)=\frac{1}{2}\left[\left|u_{n}\right|-u_{n}\right]
\end{aligned}
$$

(ii) It should be noted that three are no comparison tests for the cgt of conditionally cgt series.

Alternating series

A series whose terms are alternately +ve and -ve is called an alternating series

6. Leibnitz's test

Let u be a sequence such that $\forall \mathrm{n} \in \mathrm{N}$
(i) $u_{n} \geq 0$
(ii) $u_{n+1} \leq u_{n}$
(iii) $\lim u=0$

Then alternating series $u(1)-u(2)+u(3)-u(4)+\ldots .+(-1)^{n+1} u(n) \ldots .$. is cgt.

7. Abel's Test

If a_{n} is a positive, monotonic decreasing function and if Σu_{n} is convergent series, then the series $\Sigma u_{n} a_{n}$ is also convergent.

Uniform convergence

Point wise Convergence of Sequence of Functions

Definition: A sequence of functions $\left\{\mathrm{f}_{n}\right\}$ defined on $[\mathrm{a}, \mathrm{b}]$ is said to be point-wise convergent to a function f on $[a, b]$, if
to each $\in>0$ to each $x \in[a, b]$, there exists a positive integer m (depending on ε and the point x) such that

$$
\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon \forall \mathrm{n}>\mathrm{m} \text { and } \forall \mathrm{x} \in[\mathrm{a}, \mathrm{~b}] .
$$

The function f is called the point-wise limit of the sequence $\left\{f_{n}\right\}$. We write $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.

5. FOURIER SERIES

$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\alpha} a_{n} \cos n x+\sum_{n=1}^{n} b_{n} \sin n x$
Where $(0<x<2 \pi)$

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x
\end{aligned}
$$

And

$$
b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x
$$

And for $(-\pi<\mathrm{x}<\pi)$

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x
\end{aligned}
$$

And

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

Where $f(x)$ is an odd function; $a_{0}=0$ and $a_{n}=0$ where $f(x)$ is an even function; $b_{n}=0$.
Fourier series in the interval $(0<x<2 \ell)$ is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

Where $a_{0}=\frac{1}{l} \int_{0}^{2 l} f(x) d x$

$$
\mathrm{a}_{\mathrm{n}}=\frac{1}{l} \int_{0}^{2 l} \mathrm{f}(\mathrm{x}) \cos \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}
$$

And $\quad b_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \sin \frac{n \pi x}{l} d x$
In the interval $(-\ell<x<\ell)$

$$
\mathrm{a}_{0}=\frac{1}{l} \int_{-l}^{+l} \mathrm{f}(\mathrm{x}) \mathrm{dx}, \mathrm{a}_{\mathrm{n}}=\frac{1}{l} \int_{-l}^{+l} \mathrm{f}(\mathrm{x}) \cos \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}
$$

And $\mathrm{b}_{\mathrm{n}}=\frac{1}{l} \int_{-l}^{+l} \mathrm{f}(\mathrm{x}) \sin \frac{\mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}$
Note: When $f(x)$ is an odd function, $a_{0}=0$ and $a_{n}=0$ when $f(x)$ is an even function, $b_{n}=0$.
Half-Range series $(0<x<\pi)$
A function $f(x)$ defined in the interval $0<x<\pi$ has two distinct half-range series.
(i) The half-range cosine series is

$$
f(x)=\frac{a_{0}}{2}+\sum a_{n} \cos n x
$$

Where $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$ and $a_{n}=\int_{0}^{\pi} f(x) \cos n x d x$
(ii) The half range sine series is,

$$
f(x)=\Sigma b_{n} \sin n x
$$

Where $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$.
Half-Range Series ($0<x<l$)
A function $\mathrm{f}(\mathrm{x})$ defined in the interval $(0<\mathrm{x}<l)$ and having two distinct half-range series.
(i) The half range cosine series is,

$$
f(x)=\frac{a_{0}}{2}+\Sigma a_{n} \cos \frac{n \pi x}{l}
$$

Where $a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x$
And $\quad \mathrm{a}_{\mathrm{n}}=\frac{2}{l} \int_{0}^{l} \mathrm{f}(\mathrm{x}) \frac{\cos \mathrm{n} \pi \mathrm{x}}{l} \mathrm{dx}$
(ii) The half-range sine series is,

$$
f(x)=\Sigma b_{n} \sin \frac{n \pi x}{l}
$$

Where $b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x$

Complex form of Fourier Series

$$
f(x)=\sum_{m=-\infty}^{+\infty} c_{m} e^{i m x}
$$

Where $c_{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i m x} d x$

$$
\begin{aligned}
& C_{0}=\int_{-\pi}^{+\pi} f(x) d x \text { and } \\
& C_{-m}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} f(x) e^{i m x} d x .
\end{aligned}
$$

Parseval's Identity

For Fourier series,

$$
\mathrm{f}(\mathrm{x})=\frac{\mathrm{a}_{0}}{2}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \cos \frac{\mathrm{n} \pi \mathrm{x}}{l}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}} \sin \frac{\mathrm{n} \pi \mathrm{x}}{l}, 0<\mathrm{x}<2 l
$$

The Parseval's identity is

$$
\frac{1}{2 l} \int_{0}^{2 l}[f(x)]^{2} d x=\frac{a_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

FOURIER INTEGRAL

The Fourier series of periodic function $f(x)$ on the interval $(-\ell,+\ell)$ is given by

$$
\begin{equation*}
f(x)=a_{0}+\frac{n \pi x}{\ell} \cos \frac{n \pi x}{\ell}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{\ell} \tag{1}
\end{equation*}
$$

Where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \ell} \int_{-\ell}^{+\ell} f(x) d x=\frac{1}{2 \ell} \int_{-\ell}^{+\ell} f(t) d t \\
& a_{n}=\frac{1}{\ell} \int_{-\ell}^{+\ell} f(t) \cos \frac{n \pi t}{\ell} d t \\
& b_{n}=\frac{1}{\ell} \int_{-\ell}^{+\ell} f(t) \sin \frac{n \pi t}{\ell} d t
\end{aligned}
$$

Then

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} d u \int_{-\infty}^{+\infty} f(t) \cos u(x-t) d t
$$

This is a form of Fourier Integral.

SOME PROBLEMS

1. The set of all positive values of a for which the series $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\tan ^{-1}\left(\frac{1}{n}\right)\right)^{a}$ converges, is
(A) $\left(0, \frac{1}{3}\right]$
(B) $\left(0, \frac{1}{3}\right)$
(C) $\left[\frac{1}{3}, \infty\right)$
(D) $\left(\frac{1}{3}, \infty\right)$
2. Match the following

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Series (X)
A. $\sum \frac{x^{n}}{n^{3}}$
(i) $[0,2]$
B. $\sum(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$
C. $\sum \frac{(-1)^{n+1}}{n}(x-1)^{n}$
D. $\sum \frac{\mathrm{n}!(\mathrm{x}+2)^{\mathrm{n}}}{\mathrm{n}^{\mathrm{n}}}$
A B

	A
(A)	(iv)
(B)	(iv)
(C)	(iii)
(D)	(i)

Domain of convergence (Y)
(ii) $[-2-e,-2+e]$
(iii) $[-1,1]$
(iv)]-1, $1[$
3. The series

$$
1^{p}+\left(\frac{1}{2}\right)^{p}+\left(\frac{1.3}{2.4}\right)^{p}+\left(\frac{1.3 .5}{2 \cdot 4.6}\right)^{p}+\ldots \text { is }-
$$

(A) Convergent, if $p \geq 2$ divergent, if $p<2$
(B) Convergent, if $\mathrm{p}>2$ and divergent, if $\mathrm{p} \leq 2$
(C) Convergent, if $\mathrm{p} \leq 2$ and divergent, if $\mathrm{p}>2$
(D) Convergent, if $\mathrm{p}<2$ and divergent, if $\mathrm{p} \geq 2$
4. For the improper integral $\int_{0}^{1} x^{\alpha-1} e^{-x} d x$ which one of the following is true ?
(A) if $\alpha<0$, convergent and if $\alpha=0$, divergent
(B) if $\alpha \geq 0$, Convergent and if $\alpha<0$, divergent
(C) if $\alpha>0$, convergent and if $\alpha \leq 0$, divergent
(D) If $\alpha>0$, divergent and if $\alpha \leq 0$, convergent
5. Let $A \subseteq R$ and Let $f_{1} f_{2}-f_{n}$ be functions on A to R and Let c be a cluster point of A if $L_{k}=\operatorname{Lim}_{x \rightarrow c} f_{k}$ for $k=$ $1, \ldots . ., n$ Then $\operatorname{Lim}_{x \rightarrow c}[f(x)]^{c}$
(A) L
(B) $L_{k} k \in N$
(C) L^{n}
(D) 1

ANSWER KEY:- 1. (D) , 2. (B) , 3. (B) , 4. (C) , 5. (C)

1. (D) Use the following results:
(1) Let $\Sigma a_{n} \& \Sigma b_{n}$ be two positive term series
(i) If $\operatorname{Lt}_{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\ell, \ell$ being a finite non-zero constant, then $\Sigma a_{n} \& \Sigma b_{n}$ both converge or diverge together.
(ii) If ${ }_{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0 \& \Sigma \beta v$ converges, then Σa_{n} also converges.
(2) The series $\sum \frac{1}{\mathrm{n}^{p}}$ converges if $\mathrm{p}>1 \&$ diverges if $\mathrm{p} \leq 1$. We compare the given series with the series $\sum \frac{1}{\mathrm{n}^{\text {ap }}}$

$$
\begin{aligned}
& \operatorname{Lt}_{n \rightarrow \infty} \frac{\left(\frac{1}{n}-\tan ^{-1} \frac{1}{n}\right)^{a}}{\frac{1}{n^{a p}}}=\operatorname{Lt}_{n \rightarrow \infty} \frac{\left(\frac{1}{3 n^{3}}-\frac{1}{5 n^{5}} \cdots \cdots \cdot . .\right)^{a}}{\frac{1}{n^{p a}}}\left[\because \frac{1}{n}-\tan ^{-1}\left(\frac{1}{n}\right)=\frac{1}{n}-\left[\frac{1}{n}-\frac{1}{3 n^{3}}+\ldots \ldots \ldots\right]\right] \\
& =\frac{1}{3 n^{3}}-\frac{1}{5 n^{5}}+\ldots \ldots \ldots \\
& =\underset{n \rightarrow \infty}{\operatorname{Lt}}\left(\frac{n^{p}}{3 n^{3}}-\frac{n^{p}}{5 n^{5}}-\cdots\right)^{a}
\end{aligned}
$$

For this limit to be zero or some other finite number
$3-p \geq 0 \quad$ i.e. $p \leq 3$
\& for the series $\sum \frac{1}{\mathrm{n}^{\text {ap }}}$ to be convergent, $\mathrm{ap}>1$
$\Rightarrow \quad a>\frac{1}{\mathrm{p}} \geq \frac{1}{3}$
$\Rightarrow \quad a>\frac{1}{3}$
$\Rightarrow \quad \mathrm{a} \in\left(\frac{1}{3}, \infty\right) \quad \therefore$ Ans. is (D)
2. (B) (i) $\sum \frac{x^{n}}{n^{3}}$
$\because a_{n}=\frac{1}{n^{3}} ; a_{n+1}=\frac{1}{(n+1)^{3}}$
$R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{3}=1$
So the domain of a_{n} is $]-1,1\left[\sum \frac{1}{n^{2}}\right.$
For $x=1$ the given power series is
Which is convergent.
For $x=-1$ the given power series is
$-1+\frac{1}{2^{3}}-\frac{1}{3^{3}}+\frac{1}{4^{3}} \cdots$
Which is convergent, by leibnitz's test.
\therefore Ans. is (iv)
(ii) $\sum(-1)^{\mathrm{n}} \frac{\mathrm{x}^{2 \mathrm{n}+1}}{2 \mathrm{n}+1}$
$R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|==\lim _{n \rightarrow \infty} \frac{2 n+3}{2 n+1}=1$
The interval of convergence $[-1,1]$
for $x=1$, the series becomes
$1-\frac{1}{3}+\frac{1}{5} \ldots$ Which is convergent by Leibnitz's test
For $x=-1$ the series becomes $-1+\frac{1}{3}-\frac{1}{5} \ldots$
Which is again convergent.
Hence the exact interval of convergency is $[-1,1] . \quad \therefore$ Ans. is (iii)
(iii) $R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n}{n-1}\right|=1$

Since the given power series is about the point $x=1$ the interval of convergence is $-1+1<x<1+1=0<x<2$
for $x=+2$, the given series $\sum \frac{(-1)^{n+1}}{n}$ which is convergent by leibnitz's test.
Hence the exact interval of convergence is [0,2].
\therefore Ans. is (i)
(iv) $\sum \frac{\mathrm{n}!(\mathrm{x}+2)^{\mathrm{n}}}{\mathrm{n}^{\mathrm{n}}}$

The given power series is about the point $x=2$

$$
\begin{aligned}
& R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{n!}{n^{n}} \cdot \frac{(n+1)^{n+1}}{(n+1)!} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
\end{aligned}
$$

\therefore Ans. is (ii)

The interval of convergence is $[-2-e,-2+e]$,
3. (B) Neglecting the first term

$$
u_{n}=\left(\frac{1 \cdot 3 \cdot 5 \ldots .(2 n-1)}{2 \cdot 4 \cdot 6 \ldots .2 n}\right)^{p}
$$

and $u_{n+1}=\left(\frac{1 \cdot 3 \cdot 5 \ldots .(2 n-1)(2 n+1)}{2 \cdot 4 \cdot 6 \ldots .(2 n)(2 n+2)}\right)^{p}$
$\therefore \quad \frac{u_{n}}{u_{n+1}}=\left(\frac{2 n+2}{2 n+1}\right)^{p}=\frac{\left(1+\frac{1}{n}\right)^{p}}{\left(1+\frac{1}{2 n}\right)^{p}}$
or, $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{p}}{\left(1+\frac{1}{2 n}\right)^{p}}=1$
\therefore Ratio test fails.

$$
\begin{aligned}
& \therefore \log \frac{u_{n}}{u_{n+1}}=\log \left\{\frac{\left(1+\frac{1}{n}\right)^{p}}{\left(1+\frac{1}{2 n}\right)^{p}}\right\} \\
& \quad p \operatorname{plog}\left(1+\frac{1}{n}\right)-\operatorname{plog}\left(1+\frac{1}{2 n}\right) \\
& \quad p\left[\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{3}}-\ldots\right)-\left(\frac{1}{2 n}-\frac{1}{8 n^{2}}+\frac{1}{24 n^{3}}\right)\right] \\
& \quad=p\left[\left(\frac{1}{n}-\frac{1}{2 n^{2}}\right)-\left(\frac{1}{2 n}-\frac{1}{8 n^{2}}\right)+\left(\frac{1}{3 n^{3}}-\frac{1}{24 n^{3}}\right)+\ldots\right] \\
& \quad=p\left[\frac{1}{2 n}-\frac{3}{8 n^{2}}+\frac{7}{24 n^{3}}+\ldots .\right]
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty} n \log \frac{u_{n}}{u_{n+1}}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} p\left(\frac{1}{2}-\frac{3}{8 n}+\frac{7}{24 n^{2}}+\ldots .\right) \\
& =\frac{p}{2}
\end{aligned}
$$

From Logarithmic test.
The series is convergent, if $\frac{1}{2} p>1$, i.e., $p>2$
The series is divergent, if $\frac{1}{2} p<1$, i.e., $p<2$
The test fails, if $\frac{1}{2} p=1$ i.e., $p=2$
Now $n \log \frac{u_{n}}{u_{n+1}}=2\left(\frac{1}{2}-\frac{3}{8 n}+\frac{7}{24 n^{2}}+\ldots\right)$
or, $\left\{n \log \frac{u_{n}}{u_{n+1}}-1\right\}$

$$
=\left\{\left(1-\frac{3}{4 n}+\frac{7}{12 n^{2}}+\ldots\right)-1\right\}
$$

$$
=-\frac{3}{4 n}+\frac{7}{12 n^{2}}+\ldots .
$$

or, $\left\{n \log \frac{u_{n}}{u_{n+1}}-1\right\} \log n$

$$
=-\frac{3}{4} \times \frac{\log n}{n}+\frac{7}{12} \times \frac{\log n}{n^{2}}+\ldots
$$

or, $\lim _{n \rightarrow \infty}\left(-\frac{3}{4} \times \frac{\log n}{n}+\frac{7}{12} \times \frac{\log n}{n^{2}} \ldots.\right)$
Hence by higher logarithmic test the given series is divergent, if $p=2$.
Hence the given series is convergent when $p>2$ and divergent when $p \leq 2$.
The correct answer is (2).
4. (C) $\int_{0}^{1} x^{\alpha-1} e^{-x} d x$,

When $\alpha>1$, the given integral is a proper integral and hence it is convergent. When $\alpha<1$, the integrand becomes infinite at $x=0$.

Now $\lim _{x \rightarrow 0} x^{\mu} \cdot x^{\alpha-1} e^{-x}=\lim _{x \rightarrow 0} x^{\mu+\alpha-1} e^{-x}=1$

$$
\text { if } \mu+\alpha-1=0 \text {, i.e. }, \mu=1-\alpha
$$

We then have $0<\mu<1$ when $0<\alpha<1$
and $\quad \mu \geq 1$ where $\alpha \leq 0$.
It follows by μ-test that the integral is convergent when $0<\alpha<1$ and divergent when $\alpha \leq 0$.
And we have proved above that the integral is convergent when $\alpha \geq 1$. Consequently the given integral is convergent if $\alpha>0$ and divergent if $\alpha \leq 0$.
5. (C) if $L_{k}=\lim _{x \rightarrow c} f_{k}$
then it follows from a by known result which is called an Induction argument that

$$
L_{1}+L_{2}+\cdots+L_{n}=\lim _{x \rightarrow c} f\left({ }_{1}+f_{2}+\cdots+f_{n}\right)
$$

and

$$
L_{1} \cdot L_{2} \cdots L_{n}=\lim \left(f_{1} \cdot f_{2} \cdots f_{n}\right) .
$$

In particular, we deduce that if $L=\lim _{x \rightarrow c} f$ and $n \in N$, then

$$
L^{n}=\lim _{x \rightarrow c}(f(x))^{n} .
$$

